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Exactly soluble random field Ising models in one dimension 
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Netherlands 
$ Service de Physique ThCorique, CEN-Saclay, 91 191 Cif-sur-Yvette Cedex, France 

Received 14 August 1985 

Abstract. We solve exactly the one-dimensional random field Ising model for two classes 
of magnetic field distributions: symmetric exponential (model I) and non-symmetric 
exponential (model 11). For both models, expressions for the free energy at all finite 
temperatures are presented. The low-temperature region is examined in more detail; we 
obtain the zero-temperature energy and entropy in closed form; it is shown that the free 
energy of both models has an expansion in integer powers of temperature. Model I has 
a non-vanishing zero-point entropy for all values of the parameters as soon as randomness 
is diluted. In model I1 the zero-point entropy is zero except for a discrete sequence of 
values of one parameter. In some cases the zero-temperature magnetisation is positive 
whereas the average magnetic field is negative; the magnetisation may also change sign as 
a function of temperature. 

1. Introduction 

Magnetic models in random external fields have been the subject of considerable recent 
work. Their theoretical interest and difficulty is due to the combined effects of random- 
ness and frustration, which are responsible for the existence of numerous degenerate 
or almost degenerate ground states, in close analogy to spin-glass models. The one- 
dimensional random field Ising model already exhibits interesting frustration effects, 
although physical quantities are singular only at zero temperature. After some earlier 
work (Fan and McCoy 1969, Azbel 1973, Lifshitz 1974), the interest in this problem 
was considerably revived by the introduction of the concept of frustration by Toulouse 
(1977). Exact solutions have been derived for some particular field distributions 
(Derrida et a1 1978, Grinstein and Mukamel 1983). It has also been pointed out that 
the support of the distribution of local fields and related quantities is a Cantor set 
under some circumstances (Bruinsma and Aeppli 1983, Gyorgyi and Rujan 1984, 
Normand et a1 1985). The regime where the ferromagnetic coupling J is much larger 
than the random fields has been examined by Demda and Hilhorst (1983). However, 
up to now, the low-temperature behaviour is not known. 

In this paper, we aim to present exact solutions of two particular classes of 
one-dimensional random field Ising models for all temperatures, using a method 
introduced by one of us (Nieuwenhuizen 1983, 1984a, b). It can be applied to a wide 
variety of one-dimensional disordered models and amounts to replacing the relevant 
integral equations by three-term recurrence relations with non-random coefficients. 
This method, if it works at all, assumes a very specific form of the distribution of the 
random interactions (usually exponential). An advantage is that also the diluted variant 
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1208 Th M Nieuwenhuizen and J M Luck 

can be solved without much more effort (Nieuwenhuizen 1984b). The Green functions 
can also be computed (Nieuwenhuizen 1984a). 

This method will allow us to solve exactly the two random field Ising models where 
the distributions of the magnetic fields hi are as follows: 

model Z (symmetric exponential distribution) 

hi = Hrxi  (H,>O; - C O < x i < + m )  

with 

p ( x i )  = (1 - p ) b ( x i ) + + p  e+L' 

model ZZ (non-symmetric exponential distribution) 

hi = Ho+ H,xi ( Ho > 0; --cc < H ,  < +CO, xi > 0) 

with 

p ( x i )  = (1 - p ) S ( x i ) + p  e-"t. (1.2) 

The plan of the paper is as follows. In § 2 we present some general formalism. 
Section 3 is devoted to the solution of model I. Equation (3.14) gives an expression 
for the free energy at all temperatures. Equation (3.32) contains closed form expressions 
of the zero-point energy and entropy, and of the low-temperature behaviour of the 
specific heat. Model I1 is examined in § 4. The case H ,  > 0 is elementary, since no 
frustration is present, and hence no interesting low-temperature behaviour. The result 
is given by equations (4.12)-(4.13). In the frustrated case (H,<O), we first study the 
large exchange coupling limit (J + a). Our results agree with those of Derrida and 
Hilhorst (1983) and de Calan er a1 (1989, which predict the existence of a continuously 
varying exponent a* in the singular part of the free energy; we also obtain the amplitude 
of that singularity in a closed form for arbitrary temperature. We then consider the 
low-temperature limit; our results for the zero-point energy and specific heat amplitude 
are presented in equations (4.39)-(4.41). A sequence of complex numbers aj, containing 
the above mentioned exponent a* = cyo, plays a central role in these expressions. 
Model I1 has a non-zero entropy at zero temperature for a discrete set of values of 
the steady part Ho of the field, namely Ho = 2J/  N ( N  = 1,2,3, . . . ). We finally give 
an efficient algorithm to compute the free energy for H, < 0 at finite temperature (see 
equations (4.62)-(4.64)). Section 5 presents some concluding remarks. 

2. Generalities 

The Hamiltonian of an infinite Ising chain in a random magnetic field is 

(2.1) 2 = - J 1 u~u,,. 1 - C h p i  
I I 

where the hi are independent random variables with a common probability distribution 
p ( h ) .  The partition function ZN of a finite chain with N sites and periodic boundary 
conditions is 

exP( PJ + Phi) exp(-PJ - @ h i ) )  
z ~ = T r  l S i r N  n Ti with Ti = (exp(-pJ+ph,) exp(pJ-phi)  (2.2) 
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where p = 1/ T is the inverse temperature, and hence the free energy F of the model 
is given by 

- P F =  lim ( l / N )  In Tr fl Ti. 
N-m Ic i=%N 

(2.3) 

Let ( x , ;  y , )  denote a sequence of two vectors such that ( x o ;  y o )  = (1; 0) and ( x , + ~ ;  yi+,) 
is the image by T, of (x , ;  y t ) .  The ratios R, = x l / y ,  obey 

When i becomes large, the distribution of Ri has a well-defined limit which is stationary, 
i.e. invariant under the substitution (2.4). A convenient way of dealing with this 
distribution is to introduce the following function of a complex variable U: 

(2.5) D( U )  = (In( R - U)). 

It can then be shown that the free energy F can be expressed as 

-PF = -pJ+pE+(D[-exp(ZPJ-2ph)]j (2.6) 

and that D( U )  obeys the following equation 

exp(2PJ) - ’)) + Intexp(2PJ) - U]+ PF - p J  + pk (2.7) exp( 2pJ)  - U 

where denotes the mean value of the random field hi ,  and brackets stand for averages 
WRT the stationary distribution of Ri in equation (2.5) and WRT the magnetic field 
distribution in equations (2.6)-(2.7). 

The function D( U )  is related to the distribution of the local fields hi,loc = T In Ri. 
The advantage of this function is twofold: its analytic structure is well suited for 
manipulations and analytic continuations, and it immediately gives the result for the 
quantity of interest, the free energy F. A very similar situation occurs in the study of 
random harmonic chains, where this approach was introduced by one of us 
(Nieuwenhuizen 1982). The quantities of interest in that problem are the inverse 
localisation length and the integrated density of states. 

In the two models we consider in the present paper, the random fields are 

h, = Ho + HrXi (2.8) 

where the xi  are dimensionless random variables, such that f = 0 in model I and R = p 
in model 11. It is then convenient to define a variable V through 

V = exp( - p J  - PHo)[exp(2PJ) - 1/ R )  (2.9) 

and the associated function 

E ( y )  = (In( V - y ) )  (2.10) 

which obeys the following equation: 

E ( y )  = (E{exp( PJ)[exp( PHo+ 2PH,x) + exp(-PH0)1 -2y-I exp(2pHrx) sinh(2pJ))) 

(2.11) + In y + p F - pH,f. 
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Equation (2.11) will be the starting point of our derivation of exact solutions in the 
following sections. We shall use throughout the paper the positive variables p, v, w 
defined through 

w = [2 ~ i n h ( 2 p J ) ] " ~  

cosh p = exp( p J )  cosh( pHo) w-' 

sinh v = exp(2PJ) sinh( pHo) 
cosh v = exp( p J )  w sinh p. 

(2.12) 

In terms of these variables, in the pure (non-random) case ( p  = 0), where each field 
assumes the value Ho, the stationary distribution of V is such that 

(2.13) E ( y )  = In( w e-@ - y )  

while the free energy is 

-pFp,,, = p +In w 

= pJ+ln[cosh pHo+ (sinh2 PH,+e~p(-4pJ))"~] .  (2.14) 

Hereafter, we shall denote F, the part of the free energy due to randomness 

Fr = F - Fp,,, (2.15) 

and use the following usual definitions of internal energy, entropy, specific heat and 
magnetisation: 

U = a( pF)lap 
s= p( U - F )  

c = -p2  a2( PF)/ap2 = - p  aslap 
M = -aF/aHo. 

(2.16) 

3. Model I: symmetric field distribution 

3.1. Exact solution a t  Jinite temperature 

In this section, we solve model I defined by hi = H,xi where the distribution of each 
xi is 

p ( x ) = i p  e+ '+( l  -p)ti(x). (3.1) 
Since Ho vanishes, Y also vanishes, while p is simply related to p through: exp( -2p) = 
tanh( p J ) .  Equation (2.1 1) then reads 

E ( Y )  -1n Y - PF 

= (1 -p)E(cp(O, Y ) ) + b  lom dx e-"[E(cp(x, y))+E(cp(-x, Y ) ) l  (3.2) 

where the function cp, defined as 

cp(x, y )  = exp( pJ+2PH,x)+exp( p J )  -y-l  exp(2pHrx)2 sinh(2pJ) (3.3) 
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satisfies the following identity: 

Using this property of cp, we can integrate the RHS of (3.2) by parts twice and obtain 

= PE ( Y l )  + PF (3.5) 

where y ,  = 2 exp( p J )  - 2y-’ sinh(2pJ). 
Let us introduce now the variable 

z = ( w  - y e-p)/ (  w - y e@) (3.6) 

and the function 

G(z)  = E(y)  + ln ( l -  z eZp). (3.7) 

Equation (3.5) is then equivalent to 

(1 -p2HT[(1 - ~ ~ ) d ~ ] ~ } [ G ( z ) - ( l  -p)G(z  e-2p)] 

=pF,+pG(z  e-’@)+pp2HT(1 -z2) .  (3.8) 
This diff erential-diff erence equation does not completely determine the function G(  2);  

we have to require that G(z)  has certain analyticity properties. From equation (2.4) 
we deduce that the support of the invariant distribution of R, is the interval 

exp( -2pJ) s R s exp(2pJ). 

Hence the function D ( u )  is analytic in a plane cut along this interval. The changes 
of variable (2.9) and (3.6) are such that the function G(z)  is analytic in a plane cut 
along the real axis from --CO to -1 and from +1 to +a. We can therefore expand 
G(z)  around z = 0 

Moreover, G(z)  is an even function (all c k  with odd k vanish identically, due to the 
symmetry of the field distribution). It can also be easily shown that the coefficients 
c k  decrease to zero for large k, since they are moments of a random variable which 
lies between -1 and +l .  Let 

(3.10) c k  = dkp[ 1 - (1 -p)  exp( -2kp)I-l. 

Equation (3.8) is then equivalent to the following recursion relation: 

( k  + 1)dk+2 -k ( k  - 1 ldk-2 = (2k + Ek)dk (3.11) 

where the &k are 

1 1 -exp(-2kp) 
&k =- (3.12) 

together with the boundary conditions do = 1 and dk + 0 as k + Co. The free energy is 
then simply related to d2 

(3.13) F, = -ppHf( 1 - d2). 
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Equation (3.11) easily leads to the following continued fraction expansion of F,: 

(3.14) 

which is rapidly convergent as long as the temperature is moderate. At low temperature, 
the number of terms needed to get a reasonable accuracy blows up as p-' (see below) 
and a new approach has to be used. Before going to that point, let us illustrate our 
result (3.14) and present in figure 1 plots of the specific heat against temperature for 
H, = 1.5 and J = 1 and for different values of p. The low-temperature behaviour of 
C( T )  i s  linear in T as soon as p is non-zero (see equation ( 3 . 3 2 ~ )  below). 

E 

C 0.25 - 

0 1 . 5  
T 

3 

Figure 1. Plot of the specific heat against temperature for model I with H, = 1 .5  and J = 1.  
Values of p are indicated on the curves. 

3.2. Low-temperature behaviour 

We now focus our attention on the low-temperature region: T = p-' << J, In this limit, 
the variable p is exponentially small 

and the &k of equation (3.12) exhibit a crossover at k-p- l -exp(2pJ) ;  namely 
&k-2p/pp2H? for k<< p- ' ,  while &k- l /kpZH? for k>>p- ' .  In the first region (k<< 
p- ' ) ,  &k is exponentially small in p ;  we shall neglect throughout the following such 
exponential contributions. The solution of equation (3.1 1) for &k = 0 reads (k even) 

p = exp( -2pJ) + O(exp( -6pJ)) 

For 1 << k << p- ' ,  dk therefore behaves as 

(3.15) 

(3.16) 

where y denotes Euler's constant. 
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For values of k comparable to p- ’ ,  we replace equation (3 .11)  by the following 

(3.17) 

differential equation: 

4( kd”+ d’) = Ed 

where d and E are now considered as functions of the real variable k. 
The change of variable 

y = (2/3Hr)-’ ln(2kp) (3.18) 

transforms equation (3 .17)  into the following Schrodinger-type equation: 

d” (y ) -u (y )d (y )=0  (3.19) 

where the ‘potential’ u ( y )  is 

(3.20) 

with A =2/3Hr. The appropriate boundary condition is d(y)=e-’ as y - ,  +CO. The 
solution then behaves as d(y)  = - A y +  B as y - ,  -CO. If we now match this linear 
behaviour with equation (3.16), we obtain the free energy F as a simple function of 
the ratio B/A: 

F =  -J-pH;(J+H,B/A+ yT/2)-‘. (3.21) 

From this equation the large exchange coupling ( J  -, CO) behaviour can be read immedi- 
ately, since B/A does not depend on J. We shall come back to this point in § 4. 

The coefficients A and B can be expanded as power series in T. A systematic way 
of dealing with these expansions is to introduce the Laplace transform of d (y )  

+ac 

D( z )  = ezy d(y) dy (3.22) L 
1 

in terms of which equation (3.19) is equivalent to 

D( Z )  = z - ~  

O<Res<A 

( d s / 2 ~ i s ) T (  1 - s/A)f(s/A)D(z + S) (3.23) 

0 < Re( z + s )  < 1 

where 

f ( s ) = P  c ( l - p ) “ ( n + l ) ’ .  (3.24) 

In order to solve equation (3.23), let us iterate it by substituting in the integral the 
T = 0 solution 

(3.25) 

n 2 0  

Do( z) = [ z’( 1 - z)]-I 

since d,(y) = e-’ ( y  3 0); do(y) = 1 - y  ( y  s 0). We obtain 

D,(z) = [z2(1 - z)]-’r[l-  ( 1  - z ) /A] f [ ( l -  z ) /A]+O(A-~) .  (3.26) 
Then, repeating the same procedure with D,(z), 

1 ( - l ) n  
D,(z) = @ ( z ) + -  1 - 

A Z ~ ~ ~ ~  n !  

+ O(A 
f ( n ) r [ n  + 1 - ( 1  - ~ ) / A ] f [ - n  + ( 1  - z ) / A ]  

X 
(z  + nA)‘( z - 1 + nA) (3.27) 
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This sequence of approximants converges quickly: it can indeed be shown by induction 
that D, and D,-, differ only by terms of order The coefficients A and B are 
such that 

(3.28) 

We obtain A and €3 as power series in T by expanding D ( z )  in powers of A-' and z. 
It is sufficient to use the approximant D , ( z )  to get A and B at order T2 

D( z )  = A/ z2 + B/ z + regular part. 
Z+O 

y +s, T +  y2+1r216+2ysl+s2 A = l + -  T 2 + .  . . 
2Hr 8H:  

y2+  1r2/6+2ysI+s2 
8HS 

B = l -  T 2 + .  * .  

where the quantities s k  are 

By inserting equation (3.29) into equation (3.21), we obtain the final result 

F = F o + F , T + F 2 T 2 +  . . .  
where 

F,= U , = - J - ( p H : ) / ( J + H , )  

C p H f s ;  + p H , ( s 2 - s f + r 2 / 6 )  
-2F2 = T o =  lim -= 

T-0 T 2 ( ~ +  H , ) ~  2(J + H r ) 2  ' 

(3.29) 

(3.30) 

(3.31) 

( 3 . 3 2 ~ )  

(3.32b) 

( 3 . 3 2 ~ )  

Before discussing these expressions, let us mention that the present method can be 
pursued up to an arbitrary order T'. The coefficients Ff are not functions of the s k  

only. The lowest order at which other terms appear is r', where the sum in equation 
(3.27) generates a term proportional to up in F,, with 

(3.33) 

Let us now discuss briefly the physical contents of our results. The ground-state 
energy U,= Fo has the very simple rational expression ( 3 . 3 2 ~ ) .  For H, >> J,  the part 
due to randomness (U,, = U,+J) behaves as -pH,, since every spin which feels a 
non-zero field is aligned with it in that limit. The zero-point entropy So = - Fl is entirely 
due to field configurations where n successive sites have a zero field: h,  = . . . = h, = 0, 
while h,> 0 and h, < 0 (or vice versa) are large enough. In this situation, the ( n  + 1) 
spin configurations where a, = (T, =. . . = cq = 1 ;  = . . . = U,,+, = -1 (or vice versa) 
with 1 = 0, . . . , n are degenerate. For H, >> J, the probability of these field configurations 
is just p2(1 - p ) " / 2 ,  and their entropy is l n (n+ l ) .  This fully agrees with equation 
(3.32b). 

When the probability p is small, the zero-temperature entropy and specific heat 
amplitude have logarithmic singularities. Indeed, since the sum in equation (3.30) is 
dominated by large values of n in the p+O limit, it is justified replacing it by an 
integral, which leads to 

(3.34) sk = Ilnplk[l + ky/ lnp+.  . .] 
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and hence 

In the other limit ( p  -, l ) ,  the zero-temperature entropy vanishes linearly 

H S  (1-p) ( P +  1) 
In 2 so-- 

2 ( J +  H,)' 

while the specific heat amplitude remains finite 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

These results are illustrated in figures 2 and 3. Figure 2 shows a plot of the quantity 
p s , ( p )  which contains the p dependence of the zero-point entropy So (see equation 
(3.32b)). Figure 3 shows plots of the specific heat amplitude To against H, for J = 1 
and different values of p. 

P 

Figure 2. Plot of the quantity ps,(  p )  characterising the p dependence of the zero-point 
entropy of model 1. 

4. Model 11: non-symmetric field distribution 

4.1. Preliminaries 

This section is devoted to the solution of model I1 where the random magnetic fields 
read: hi = Ha+ H r x i ,  with Ho> 0 and both possible signs for H,, and where the 
distribution of each xi  reads 

p ( x ) = p  e - " + ( l - p ) 6 ( x )  ( X Z O ) .  (4.1) 
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0.25 

0 2 
H,  

4 

Figure 3. Plot of the specific heat amplitude To against H, for model I with J = 1. Values 
of p are indicated on the curves. 

The way we obtain an exact expression of the random part F, of the free energy 
is very similar to the solution of model I. We start again from equation (2.11) which 
now reads 

E ( y ) - l n y - P F + p P H r = ( l - p ) E ( c p o ( O ,  Y ) ) + P  d x e - “ E ( ~ ( x , ~ ) )  (4.2) 

where the function cp is defined as 

and satisfies the following identity: 

Note that equations (4.3) and (4.4) become equations (3 .3)  and (3.4) when Ho=O. 

of the variable 
In analogy with our solution of model I ,  an integration by parts and the introduction 

z = (w - y  e-p)/(w e ” - y  ecrtv) (4.5) 

(4.6) 

and of the function 

G ( z )  = E ( y )  +In[ 1 - z exp(2p + U)] 
leads to the following equation: 
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The location of the nearest singularity of the function G ( z )  in the complex z plane 
can again be predicted by the same arguments as for model I. The cut of G runs from 
-cc to -ey for H, > 0; from e-" to +cc for H, < 0. Let us again expand G ( z )  around 
z = 0: 

G ( z ) =  G(0)-  ak(pk)-'exp(kv)[l-(l-p)exp(-2kp)]zk, 
k a l  

together with the boundary conditions a, = 1 and 

l i m ( l / k ) l n a k = O  (Hr<O) 
k - x  

l im( l /k)  ~ n ( ( - l ) ~ a ~ )  = -2v ( H r > O ) .  
k-cs 

The free energy is related to a, through 

F, = (pH,/cosh v)(e"a, -sinh v). 

(4.8) 

(4.9) 

(4.10) 

(4.1 1 a )  

(4.1 1 b )  

(4.12) 

4.2. The non-frustrated case (H, > 0)  

Let us first rapidly consider the case H ,  > 0. This situation, where all magnetic fields 
are positive, is not very interesting from a physical point of view. Equation (4.9) is 
easily solved by the following continued fraction expansion: 

(4.13) 

The free energy is then obtained by inserting equation (4.13) into equation (4.12). 

exp(-2v) exp(-2v) exp(-2v) 
( J l +  U 2  + U3 + 

a, = - . . . .  

At low temperature, the variables p and v diverge linearly with P 

CL - PHO 
v - P ( 2 J  + Ho). 

(4.14) 

The random part of the free energy is 

F, = - p H ,  - ZpH, exp[ -2(2J + Ho)P] + . . . . (4.15) 

The first term is equal to the average field per site; the correction is exponentially small 
(just as in the non-random case) and corresponds to flipping one spin at a site for 
which x, << 1. 

4.3. The frustrated case (H,  < 0): singular perturbation expansion 

The rest of this section is devoted to the interesting case H, < 0, where the magnetic 
fields have both signs, and hence lead to some frustration, and to a non-trivial 
low-temperature limit. 
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In this case, the simple-minded solution (4.13) would not converge. In order to 
impose the behaviour (4.1 1 a) ,  we have to use more sophisticated methods involving 
Mellin transform techniques. Let M (  s) denote the following integral 

M ( s )  = (dz/21ri)z-~ Im G‘(z) I (4.16) 

where the contour C encloses the cut of G(  z), i.e. the interval (e-”, 00) with the positive 
orientation. It is easy to convince oneself that the function a ( s )  = exp( - vs) M ( s )  obeys 
the following difference equation 

a ( s + l ) =  a(s)u(s )+exp(-2v)a(s - l ) .  (4.17) 

a(s) is given by equation (4.10) where the integer k is replaced by the complex number 
s. In particular a(  k )  = ak. 

We now solve equation (4.17) in the low-temperature regime, forgetting about all 
exponentially small terms of order exp( -2v). The naive low-temperature solution of 
equation (4.17) is 

(4.18) 

but it is clearly not exact, since the corresponding F, does not vanish as p or H ,  + 0. 
It is only asymptotic to the true solution as Re s + +W. More precisely, if we define 
b ( s )  by 

a ( s ) =  C exp(-2vs) fl [ Z ( s + n ) / ~ ( n ) ] b ( s )  
n s l  

where C( s )  is the v + 03 limit of a ( s )  

1 1 - exp( -2pH0s) 
2/3H,s 1 - ( 1  - p )  e x ~ (  -2pH0s) 

C(s) = 1 +- 

(4.19) 

(4.20) 

then we can drop all terms proportional to exp(-2v) in a consistent way and obtain 

(4.21) 

The solution b ( s )  giving rise to the expected analyticity properties of G(z)  reads 

d t  rr 
L(s+ t )  I O<Re -- 2rri sin ~t 

b ( s )  = (4.22) 

and hence 

(4.23) dt  ~r %O) Z(n)Z(s+n)  
C ( S + ~ ) . , ~  Z(s+ t+n) ’  

exp( 2 v t )  - J O<Re -- 21ri sin rrt 
a ( s )  = c 

where the constant C is determined by the condition a(0 )  = 1 and C(0) = 1 + H o / p H r  = 
L / p H , .  It is clear from equation (4.23) that eventual poles and zeros of Z play a crucial 
role in our low-temperature analysis. Poles of C occur only for Re s < 0 and will not 
interfere in the following. The relevant points are the zeros of E. This function can 
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be written as 

where 

f(s) =exp(-2Hos)[l+(1 -p)2H,s]/(1+2Hg) 

(4.24) 

(4.25) 

is nothing else but the average of exp(-2h,s) over the field distribution 

f ( s )  = I p(x)  dx  exp[-2(Ho+H,x)s]. (4.26) 

Hence the zeros of Z are, up to a factor p, the numbers s such that f(s) = 1. The role 
of complex points where the function f ( s )  assumes the value 1 has been discussed by 
Derrida and Hilhorst (1983). These authors have considered the limit where J + +cc 
at fixed H,, H, and p. Although this regime does not coincide with the low-temperature 
limit ( p +CO at fixed J, H,, H r ) ,  it is also governed by our equation (4.23). In fact 
the relation f ( s )  = 1 appears in the study of other one-dimensional disordered systems, 
such as diffusion in a random environment. The simplest of these problems consists 
in finding the distribution of the random variable 

z =  l+x ,+x ,X~+XIX*X~+.  . . 
where the x, are independent random variables with a common distribution r(x). This 
problem has been examined by de Calan and Petritis in collaboration with ourselves 
(de Calan et a1 1985) also using Mellin transform techniques. 

4.4. The frustrated case (H, < 0): J +  00 limit 

We now briefly discuss the behaviour of the free energy F in the Derrida-Hilhorst 
limit (J + a). This behaviour crucially depends on the sign of the average magnetic 
field 6= H,+pH,. For -pH, < H, (i.e. I >  0), the equation f ( s )  = 1 has one real positive 
root a*. Assume 0 < a* < p. Equation (4.23) yields 

a, - CZ(0) 

and the free energy behaves as 

F = - J - ( H o + p H r ) - A + e x p ( - 4 a * J ) +  . . .  ( O <  . * < P )  
with 

sin( ?ra * T) 
.rrff*T A + =  f ' ( a * )  (2  sinhPHo)-2"*'T(1+2Hra*)[1+2(1 -p)H,a*] 

(4.27) 

(4.28) 

(4.29) 

If a* > p, then the dominant contribution to a, is proportional to exp(2v) and 

F =  - J - ( H o + p H r ) + O ( e x p ( - 4 P J ) )  (a* > P I .  (4.30) 
For - p H , >  Ha (i.e. 6<0), the equation f(s) = 1 has all its roots in the half-plane 
Re s < 0, and the leading one s = a* is real negative. For -P < a* < 0, equation (4.27) 
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still holds and hence the free energy behaves as 

F = - J + ( H 0 + p H , ) - A - e x p ( 4 a * J ) + . .  . ( - p < a * < O )  (4.31) 

with 

(pH,+ H,)’ mr*T (2 sinh pH0)2a’T 
A- = -4 

f’( a*) sin( ra* T )  (1 + 2H,a*)[ 1 + 2( 1 -p)H,a*l 

(4.32) 

If a* < -p,  then the dominant correction term to a, is of order exp(-2v) and 

F = - J  + ( H,+pH,) + O(exp( -4pJ)) (a* < - p ) .  (4.33) 

The four types of low-temperature behaviour of F we have obtained in equations 
(4.28), (4.30), (4.31) and (4.33) agree with the general analysis of Derrida and Hilhorst 
(1983). Moreover we have exact expressions ((4.29) and (4.32)) for the amplitudes of 
the singular corrections. They admit an expansion in integer powers of T. We shall 
show hereafter that this remains valid for all values of J. Another interesting point 
which is not known for arbitrary field distributions is what happens as J + CO when 
a* = 0, i.e. when the average magnetic field vanishes. In the present case, the a* + 0 
limit can be studied directly from equation (4.27). We obtain 

2 n z l  X ( n )  -’ 
T 

F = - J-  Hg- 2-p(J-&+~ln(2sinh/3kZo)-- - 
2P 

(4.34) 

The exponential terms exp(-4la*IJ) are thus replaced by the simple integer power 
law J-’ for large J. 

4.5. The frustrated case (H, < 0): low-temperature limil 

We consider now the low-temperature behaviour of the free energy F, starting again 
from equation (4.23). Let us denote by aj (--CO < j < +-CO) the non-zero complex numbers 
satisfying f ( a j )  = 1, such that Im aj is an increasing function of the label j, a-j and aj 
are complex conjugates, and ao= a* is the only real number of the sequence. In the 
particular case where the average magnetic field vanishes (pH, + Ho = O), we define 
a, = 0 by continuity. When ijl is large, aj have the following asymptotic values (for 
p f  1): 

ln(1-p) i.rr 
’ 2H0 H, 
a. = +- j + Saj (4.35a) 

with 

Saj - ip[4.rr( 1 -p)l H,jI]-’ (ijl + C O )  (4.356) 
which are asymptotically equidistant points on a vertical straight line. The function 
Z(s) has therefore poles at s = Taj ; this infinite string of poles now has to be considered 
as a whole. Equation (4.23) leads to the following expressions: 

n z(n)’ ) (4.36a) 
T exp[2(2J+ Ho)ajl 2(0) 

a, = C (1 +E 
.i sin(.rrTaj) 2’( Taj) 2 ( n  + Ta,)’ 

a, = CZ(0). (4.366) 
By eliminating C and using the relation between the functions X and f defined in 
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equations (4.20) and (4.25) respectively, we obtain 

PHr + HO 7r Tal exp(4Jaj) 
a, = PHr ( 1-2(pHr+Ho’~sin(~Taj)ff(aj)(l+2Hraj)2 

(4.37) 

This expression has a formal expansion in powers of T which reads 

a1 = A,+ A2T2 + . . . (4.38) 

where A2 has contributions from the sine and from the infinite product 

(4.39a) 

(4.396) 

By inserting this result in equation (4.12), we obtain the following expansion of the 
total free energy: 

F = F o + F 2 T 2 +  . . .  (4.40) 

where 

U0 = F o  = - 5 - Ho + pH, (2Ao - 1 ) 

To = lim( C /  T )  = -2F2 = -4pHrA2 
T-0 

(4.41a) 

(4.41 6) 

with the same notation as for model I. 
Our model I1 therefore has generically no zero-point entropy. Its ground-state 

energy and specific heat amplitude are expressed in equations (4.39) and (4.41) as 
infinite sums over the complex numbers aj such that f (  aj) = 1. We now examine these 
general expressions in a few cases of physical interest. 

For small p ,  the sums in (4.39) are dominated by the pole at 

a* = - ( 2 ~ , ) - ’ [ 1  - p  e x p ( ~ , / ~ , ) + ~ ( p ~ ) ] .  (4.42) 

The physical quantities hence behave as 

U, = - 5 - Ho - p H, { 1 - 2 exp[ ( 2 5  + Ho) / Hr 1 } + 0 ( p ’) (4.43a) 

(4.436) 

These results have the following interpretation. For small p, only a spin which feels 
a field hi < -25 aligns along it; the gain in energy is ( -2hi + 45). If we average this 
quantity over the field distribution in the interval --CO< hi < -25, we indeed obtain 
equation ( 4 . 4 3 ~ ) .  The specific heat amplitude corresponds to excitations at sites where 
hi = -2J, and has therefore the same exponential factor. 

It can easily be checked that equation (4.43) also holds in the limit of weak disorder: 
IHrI<< Ha for all values of p ,  with subleading terms of order exp[2(25+ Ho)/Hr]. 

We consider now the strong disorder limit: I HrI >> Ho. In that limit, the asymptotic 
estimate (4.35) of the location of the poles aj becomes exact, and the sums in equation 
(4.39) can be explicitly evaluated. The result for the zero-point energy is 

(4.44) 

r 0 -  - - I  6T2(P/HA exP[(2J+Ho)/H,1+O(P2). 

U0 = -5 - Ho + pH, + 2Ho[ 1 - ( 1 - p ) *” Ho+( 25,’ Ho) ] + O( H ; I )  
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where $(x) denotes the following function: 

exp ( 2 T ijx ) 
+ ( x ) = p 2  c 

-a;<j<+a; [27rij+ln(l - p ) I 2 '  
(4.45) 

+(x) is periodic with unit period, is not differentiable at integer values of x, and has 
a very simple form for 0 s x S 1 : 

*(x) = ( 1  -p)I -y l  - p x )  ( O S X S l ) .  (4.46) 

Equation (4.44) therefore singles out a discrete sequence of values of Ho 

Ho = 2J/ N ( N  = 1,2,3,  . . . ) (4.47) 

such that the zero-temperature magnetisation MO = -d Uo/JH,  assumes a constant value 
in each interval of this sequence (for H,-. -m), namely, on the whole interval 

(4.48) 2J/ ( N  + 1 )  < Ho < 2J/ N 

the magnetisation MO has the following limit: 

M ( N ) =  -1 +2(  1 + Np)(  1 - P ) ~ + '  (4.49) 

as H, -. -a. 
Equations (4.43) and (4.44) show that the part of the ground-state energy due to 

the randomness: U,, = U, + J + Ho increases linearly with ( - H r )  for ( - p H , )  << Ha (weak 
disorder regime) but decreases linearly with ( -Hr) at strong disorder. Figure 4 clearly 
shows this behaviour: U,, is plotted against (-Hr) for J = 1,  Ho = 1 .5  and different 
values of p .  

Figure 5 shows plots of the zero-temperature magnetisation against H i '  for J = 1, 
p = 0.4 and different values of H,. The genuine discontinuities of MO which occur at 
H,  -. --03 (see equation (4.49)) become steep shoulders for large finite H,, and are still 
present as small ripples for H, = -2. Whenever Ha is finite, the value H!') of H, at 

0 3 
-H, 

6 

Figure 4. Plot of U,,, the part due to randomness of the ground-state energy of model I 1  
with J = 1 and Ho = 1.5,  against ( -Hr ) .  Values of p are indicated on the curves. 
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1 

-1 ~ , , , ~ , , Z , t , l , , I l , , , ,  

0 3 
H,' 

Figure 5. Plot of the zero-temperature magnetisation MO against H i '  for model I1  with 
p = 0.4 and J = 1 .  Values of H ,  are indicated on the curves. The integers 0,. . . , 5  refer to 
the values of N (see equation (4.47)). 

which MO vanishes, the value H:*' at which U,, vanishes and the value H$3)  = - Ho/p 
at which the average field 6 vanishes are generically all different. 

The sequence of values (4.47) of Ho also gives rise to a non-vanishing zero-point 
entropy. Indeed the sum in equation (4.39b) is divergent for those values of H , ,  and 
a more correct treatment of equation (4.37), to be discussed below, shows that the 
expansion (4.38) contains a term A I T  with 

(4.50) 

The limit inside the brackets can be evaluated by using the asymptotic estimate (4.35) 
of ai and replacing the sum by an integral. The final expression for the zero-point 
entropy So is 

S o = R Z ( l - p ) "  In2 (4.51) 
where R is related to U,, through 

R = (Uo,+PHr)/2Hr. (4.52) 
This entropy is due to configurations where N successive sites have hi = Ho = 2 J /  N 
( i  = 1 ,  2 , .  . . , N )  while the two adjacent spins are down (go= gNtl = - l ) ,  such that 
the two spin configurations u1 = . . . = uN = +1( -1) are degenerate. The quantity R, 
which is to be interpreted as the probability that a, = -1, has no simple expression in 
the general case. In the small p limit, equation ( 4 . 4 3 ~ )  leads to 

R - P  exp[(2J+ HO)/H,I ( P + O )  (4.53) 
which coincides with the probability for having hi < -2J, as it should. In the strong 
disorder limit ( 1  Hr/ >> Ho),  equation (4.44) implies the following behaviour 

which is also expected. 
R = p + O ( H ; ' )  ( H r  + -0) (4.54) 
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Figure 6 shows plots of the zero-temperature entropy So against p for the first five 
values of the sequence (4.47), with J = 1 and H, = -6. 

Let us show that the specific heat is linear in temperature: C(T)=I‘,T+O(T’), 
also when a non-trivial zero-point entropy is present. We go back to equation (4.37) 
and carry out carefully the necessary subtractions. Define 

( 4 . 5 5 ~ )  

gj = (1 - P ) - ~  exp(4ajJ)(1+2H,aj)-*/f’(aj) (4.55 b)  

The asymptotic behaviour of these quantities for large j reads: 

TjT/ Ho 
’:” = sinh( r j T /  Ho) 

We split the sum in equation (4.37) as follows: 

c = c g, +c g:”(S,”’- 1) 
I I I 

+ c [ g l ( S I F ,  - 1) - g,””(SYS - 1 )I 
I 

(4.55c) 

( 4 . 5 6 ~ )  

(4.56b) 

(4.57) 

where the terms with j = 0 are defined by analytic continuations when necessary. The 
first term contributes to the ground-state energy. The second term contributes to the 
zero-point entropy; as was already discussed, it can be replaced by an integral and 

0.04 r 1 

5, 0 .02  

0 0.5 
P 

1 

Figure 6. Plot of the zero-temperature entropy So against p for model I1  with J = 1 and 
H, = -6. The integers refer to the values of N (see equation (4.47)). 
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leads to equations (4.51)-(4.52). The last term has a regular expansion in powers of 
T2. Our final result for the specific heat amplitude To is 
r o = ( - H , ) - 1 ~ 3 ( 1  -p)2N(ln2)2-d.rr2H,’R2(1 - p ) ”  

X C  [ I +  8H0Hrg,a,(l + a,Hr)I* (4.58) 

This method can be extended to compute the higher-order terms in the low-T 
expansion (4.40) of the free energy, both when So is vanishing and non-vanishing. 
Our expectation is that, just as in model I, the free energy has an asymptotic expansion 
in integer powers of T. 

J 

4.6. The frustrated case (H, < 0): convergent algorithm at jinite temperature 

We finally mention an efficient way of finding numerical values of the free energy for 
all finite temperatures. Contrary to model I, the three-term recurrence relation (4.9) 
together with its boundary condition (4.1 l a )  cannot be treated numerically as it stands. 
A convergent algorithm can be found by expanding the function G(z) around the 
point z = -e”. Define a function K (  t )  such that 

K ( t ) =  G ( z ) I z = - e ’ + 2 r c o s h  Y .  

Equation (4.7) is then equivalent to 

[1-2pHrt(l - t ) a , ] K ( t )  
= pFr+ppH,(2t - 1) +[I - 2( 1 -p)pH,t(l - t ) a , ]  

x K[exp(-2p)t + (1 - exp(-2p)) / ( l+ exp(-2v))]. 

If we expand K in a power series in t 

K ( t ) = K ( O ) - p  (Kn/n)t” 
n 3 l  

and define quantities L, through Lo = 0 and 

L,, = n exp(-2np) - K,(  I)(l-exp(-2p) ( n a l )  
/ z = n  1 n 1+exp(-2v) 

then the K ,  have to obey the following equation: 

together with the boundary condition KO= 1. 
The free energy is then given by 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

Equation (4.63) involves IC,,-, in the LHS, and in the RHS through L,-] ; it can therefore 
be used to express K , - ,  as a function of K p  with p a  n. Since K ,  decrease for large 
n as 

K ,  - n’l’@*r (4.65) 
the following numerical algorithm for the free energy is efficient: take K ,  equal to 
their asymptotic estimate (4.65) for n > no, where no is some large number; then use 
equation (4.63) to determine K, ,  IC,,-, , etc, down to K O ,  and multiply all the K,  by 
a scale factor such that the condition KO = 1 is satisfied; the free energy is then given 
by (4.64). 
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1 

M O  

3 

0 5 10 
T 

Figure 7. Plot of the magnetisation of model I 1  with J = 1, H, = 1.5 and H, = - 5  against 
temperature. Values of p are indicated on the curves. 

We have computed by this method the dependence of the magnetisation M on 
temperature. Figure 7 shows plots of M against T for different values of p ( p  = 0, 
0.25, 0.5, 0.75 and 1). The parameters read J = 1, Ho = 1.5, H, = - 5 .  These curves are 
very smooth for generic values of the parameters. Note, however, that M may change 
sign as temperature is varied: this occurs for p = 0.5 in the present case. 

5. Conclusions 

In this paper, we have presented exact solutions of two particular random held 
ferromagnetic king models in one dimension. 

For model I (symmetric exponential distribution without an external field), we give 
an explicit continued fraction expansion of the free energy at finite temperature. The 
study of the low-temperature limit needs a more refined analysis of an effective 
differential equation. The result is that the free energy can be expanded in integer 
powers of temperature. The zero-point entropy is non-vanishing for all values of the 
parameters if p # 1 (diluted randomness). 

Model I1 (non-symmetric exponential distribution) may be considered as follows: 
a fraction p of the sites has a negative random field H , x i .  If the external field Ho is 
negative, then the ground state remains the ferromagnetic one, since there is no 
frustration, and we find the simple solution (4.12)-(4.13). (This expression was in fact 
evaluated for positive Ho and H,, but the problem is clearly invariant under changes 
of sign of all fields.) If a positive external field Ho is applied, some frustration is 
introduced in the system. The frustrated case is physically more interesting and 
technically more difficult. The large exchange coupling limit and the low-temperature 
limit are studied through a singular perturbation expansion of our recurrence relations. 
The magnetisation may be non-zero when the average magnetic field vanishes, even 
at zero temperature. Moreover, it may change sign when temperature is varied. 



Exactly soluble random field Ising models 1227 

For a discrete set of values of the steady part Ho of the random fields, the 
zero-temperature entropy is non-vanishing and the zero-temperature magnetisation is 
discontinuous in the strong disorder limit. 

In both models the specific heat behaves linearly in temperature at low temperature, 
whenever some frustration is present, irrespective of the vanishing or non-vanishing 
of the zero-point entropy. This behaviour, which seems to be quite general, is very 
different from the large J limit, where the free energy exhibits a continuously varying 
critical exponent (Derrida and Hilhorst 1983). We have verified this prediction 
explicitly, calculated the (temperature-dependent) amplitude of that singular part, and 
also obtained the result for the limiting case where a* vanishes. 

The free energy of both models has an (asymptotic) expansion in integer powers 
of temperature. This fact seems to be very general. 

Let us finally mention that the antiferromagnetic version of model I1 is also soluble 
by our method (model I is invariant under the change J + - J ) .  Our methods of analysis 
of the low-temperature singularities (effective differential equation for model I, and 
singular perturbation expansion of the Mellin transform for model 11) are also appli- 
cable to other singularities of these models, such as Lee-Yang singularities occurring 
for complex values of H,, and H,. 
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